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CHORDWISE AND COMPRESSIBILITY CORRECTIONS TO SLENDER-WING THEORY 1

By HARVARD LOMAX and LOMA SLUDEE

SUMMARY

Owrectiou to the ~oiution.sgicen by dender-wi~ themy for
the lift dtitribution on triangular and rectangularutin9sof low
wpwt miio are obtained in two steps. F&t, .den.derwing
theo~ is wed tojind the load di@ibu@m orer a wing of gicen
dupe. Second, the $panmiee ~wiaticm of the loading 80 ob
tained i~ [e@ unchanged but the chwdurisemriaiion ie nwd@xi
by eatisjying an appropriate integral equation. Rewdte are
shown for jlat-plate u<ng8 and, in the ca8e of the subsonic,
triangular wing, a comparison ~ made with other theoretical
8olution8and experimental re8u&.

INTRODUCTION

The calculation of loading on three-dimensional lifting
surfaces is a fundamental problem in aerodynamic research.
The complexity of the problem has M to the dedoprnent
of certain simpli&d theories by means of which the loading
on speciaI types of plan forms can be estimated quickly.
The amount of error which these estimates contain is of
considerable interest, as are methods which fl tend -to”
correct, such errors without undue labor.

Slender-wing tlwwry applies to one. such simplified body
of analysis. .There are two basic assumptions of this theory.
One, the angIe of attack is small enough so that the vortex
sheet lies in the plane of the wing and the boundary condi-
tions for the wing can be projected onto a horizontal plane
parallel to the direction of the free stream; and the other,
that either the chordwise gradient of vehwity is small enough
or the free-stream Mach number is close enough to unity
that the linearized partial ditkential equat ion which governs
the fluid flow becomes Laplace’s equation in a pkme t rans-
wrse to the free+ tream direction. References 1 through 6
are examplw of pape~ dev+oping slender-~ theory.

The magnitude of the error of such a theory, in the case
of subsonic flow-, is indicated by observing solutions for
triangular wings. SLmder-wing theory gh-es a dnite due
for the loading along the trailing edge. Proper inclusion of
the chordwisc and compresibiWy effects results in solutions
that satisfy tie Kutta condition and make the loading fall
to zero at the trailing edge. It is the purpose of this report
to study such modifications.

The corrections due to the chordwise and compres@bility
effects are obtained in the folIowing manner: First, an in-
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tegral equation is set. up relating the shape of the wing
surface to the lift distribution; second, this integraI equation –
is adved for the gi~en shape under the assumption that the
chordwise velocity gradients are smaLI or that the free-stream
Mach number is unity; and firdy, the integral equation is
reinspected for the same wing shape, this time with the
spanwiae lift distribution &cd at the variation just obtained
and with the chordwise variation as the unknown and the
Mach number terms included.

Results me presented and discussed both for triangular
and rectangular, flat-plate plan forma in both subsonic and
supersonic flow.
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LIST OF IMPORTANT SYMBOLS

jjz

()
aspect ratio ~

span of wing measured normal to plane of

-etw
root chord of Wing

piiching-moment coef%cient

(pitching moment about leading edge or apex
USco )

incomplete elliptic integral of the second kind
with argument t and modulus k

co=plete elliptic integmd of s-wend kind, E (1J)
incomplete ,eUiptic integral of the fiit kind

with argument t and modulus k .

for triangular wing, dope of leadhg edge relat.ire
to plane of symmetry

.-

free-stream Mach number .—

( v,
).speed of sound in free stream

static pressure
pi—p.

free-stream dynamic pressure
(WO

5emispan of rectangular wing
area- of wing
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perturbation velocity component in the direction
of tlm z axis

u~ —u~
free-stream velocity
pmturbation vcdocity component in the direction

of the z asis ,
–Voa
Cartesian coordinates of an arlitrary point
Cartesian coordinates of source or doublet

position
x
z
angle of attack

{1–.44$[
pm
density in free-stream
doublet weightiug factom
perturbation velocity potential

% —m
SUBSCRIPTS

conditions on lovrer surface of wing (at z= O—)
conditions on upper surface of wing (at z=O + )

THE INTEGRAL EQUATIONS
SUM.ONIC

Triangular plan form,—.k general solut.ion o.f Laplace’s
equatiou which is suited to problems in linearized subsonic
wing theory (given, e. g., in refcrcmce 7) is that which relates
a velocity potential or perturbation velocity to tic value of
its jump across a given surface. For the lifting triangular
wing shown in figure 1 this can be written

where p=~-~, u is &o perturb~~on vciociky parallel”
to the x m%, and Au is the jump in u over the wing plan form.

Y’ -mx _

Y

In linearized theory this jump can he
coefficient Ap/q by the equation

Au=~ Al

()2q

related to the loading

(2)

Further, tim velocity potential p can be found by the rclntion

P=
r

U dx
—m

Opwating on equation (1) in this mtimwr nnrl interclmugillg
the order of integration gives

(3)

●

which represents, physically, a distribution of cknumtary
homcshoe Yortices.

The cffecL of compressibility in o linearized study of lifting-
surface theory can only entw through the use of f?. Scttiug

“(4)

it is seen that, u is the only term in rquation (3) which con-
tains p. This term has an intercsfiug interpretation in (11P
lighL of the study which has been made at sonic speeds. AL
MO= 1 (i. e., @= O), u has cithw thv due 2 or O, dcpemling
on whether xl is less or grefiter than x. Hence, for MO= 1,
equation (3) becomes

Now reversing the order of integration and using thu dcfmc-
tion implied by equation (2), namely,

Ap2?Mw .. _. . ..-—== _
!l 10 b,

gi-res finally

(6)

Equation (6) has been studied in reference 5 as tic funda-
ment.al equation for slender wings or wings flying at ncm
sonic speeds. It is an equation which gives the solution for
the velocity potential in a, Lhrcc-dimcnaional flow in terms of
two-dimensional doublets, tho two dimensions being aL right
angka to the free-stream direction. A solution of such u
nature is immediately implied by the physical character of
both sonic wing theory, in which the Much cone has dcgcncr-
ated to a Mach plane, and slender-wing theory, in which the
wing is so slender that the chordwisc gradicn L of velocities
can bo neglected compared to the vertical and lat cral
gradients.

By comparison of equation (5) with equation (3), iL is
seen that the term u can be interpreted w a factor which
corrects the slender-wing-theory results as given by wqualicm
(5) for the effects of chordwise gradients in velocity anJ
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compressibility. By consideration of the effect at one point
of the distribution of doublets o~er the wing, this correction
ran be visualized as a reweighing of the two-dimensiomd
tloublets according to their position rdative to the point.
Figure 2 indicates the variation of a across the span at various
chord stations for 13=0.6. Observe that the doublets ahead
of the point at wh~ch the potential is to be determined are
still weighted fm more heaviIy than those behind the point.
The effect of considering p different from zero, however, is
to reduce the extreme dfierence in weight occasioned at
s=0 so that the doublets behind a gi-ren point do have some
effect on the induced velocities there, and the doublets ahead
of a point induce a somewhat smaller disturbance than
before. Since the strength of these weighted twodimewsionaI
lfoublet.s is given by the nmggtude of the threedimensionid
loading, their strength is zero everywhere off the wing plan
form including the area behind the wing occupied by the
vortex wake.

Two different methods for the further reduction of equation
(3) w-N be considered. The first method in\-olres fiding the
verticrd induced relocity for points along the x axis, v&iIe
the second involves flndiing the average vertical induced
rdcwity along the span at a giren chord station. The first
method must be discarded for triangular wings because of
difficulties around the apex; the second, however, pro-ies to
be satiafacto~. The simplification obtained by considering
the vertical induced velocity for points aLong the z axis w-ill
be considered later in connection with the rectangdar wing.

Since it. is easier to consider first the arerqjng process,
the operator

is applied to the weighted doublets, UZ/[(Y—VJ~+~, of eq~-
tion (3) with the result that

where IE is the average value of the vertical induced velocity ,
along a given span.

The solution for Ap/g obtained from “slender-wing theo~
can be written 2

Ap 4?.00m%; zl
f (–)‘=— 1701JNX1Z- y? 1 co!I

(8)

where in that theory ~1(ZJCO)= 1. If the value of Ap/g
given by equation (8) is placed in equation (7), the resulting
integral equation can be written in a simplified form if it is
noted that “

1,= H +’=Z7 .ml 1!(2—2#+ /fl*(mx—yly ~ (2’—Zly+ 19<iz+yly
-ml ‘nlr — yl

1
~ mdyl

4msx1z-y?

(9)

where for the first term in the brackets the transformation
q =mr— yl was used and for the second the transformation
~=mr+ yl. Hence, equation (7) finally reduces to the .:-
folIoKin.g

The solution’ of equation (10) will be discussed in a later
section de~oted to triangular wings.

Rectangular plan form.—If the plan form of the wing is
rectangular as shown in figure 3, then equation (3) is mod&d
sIightly to tie form—

It is posible in this case to study the vertical induced wloc-
ity for pointa aIo~u the x axis; that is, to find bpfbz by
equation (11) and then set both y and z equal to zero. In
order to do this a speciaI notation is employed. Thus, if
the indefinite integral of J@)/& can be written (vrherej(y) is
bounded at u=O)-.

J
~ dy=J(y]+C
Y’

then, by definition,

By means of this definition it can be shown (see reference 8)
that
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integration by parts gives -.

(15)

and equation (13) can be written

This intqgral equation has beeu derived previously by K.
Wisghardt (refcrcncc 9) with regard to the rectangular-wing
problem. The solution of equation (16) will be discussed
in a later section devoted to rectangular winge.

SUPERSONIC

Triangular plan form.—In passing from subsonic to
supersonic theory, we pass from the elliptic to the hyperbolic
partial differential equation and in particular from IJaplace’s

1The soMon for the rwkowlar *E ~ w by afe*-w@ tisw fS~t the k@ be
zerorm!oeeeveryspmwlw atrfp aft of Lbelsadlng edga To End the chordwk mrraction to
mob a theory, therefore,a spenwfsedktdbutfon mat M asmumxl. Sk% however, alende~
wing theory RISOrwufrm en olffpticel em Iaading for tbe boundery umdftfone of e metan.
gular wing to bo astfsded,a reasonableeboim is that given by eqoatfon (14).

:quation to the wave cquntion. ‘I%r solution which relates
the perturbation velocity u at any point in the field to the
[oading on the wing can again be written in terms of an
cknentary horseshoe vortex distribution ovm the }ving plan
form. As in refwmme 3, this becomes

Za

SS --–-
-(z–z,)Audx,dY1 ~~ “ _ ,. .,,

‘ u=——% ax , [(&1 Y+2S11@ –i,j’~~

and since ~_& and Ap_2Au
– ax q v“’

VQZ–ss‘f dx,dy,

[ --
x—xl 1(17)

‘= 4; r (v--w)’+ 2’ ~i(z–z,)’–p’(y–~,)~–pgz’

where T k the area on the wing bounded by the wlges and
the trace of the hfach foreconc from the point x, y, z. Again
the effect of compressibility appenrs only in tho term within

I the brackets. Hence, setting

mP containa all of the hlach number dlccts at supmamic

speeds, At MO= 1, Cp= 1, and since, by Lhc Mnition of
r, X1<z, it follows thtit at sonic spmds cquntion (17) tdso
reduces to cauation (5). Tlumforc the doubleL distribu-. _
tions reprcse~tcd by cqumt.ions (17) and (3) fire consishmt
at the speed of souncl.

In order that an exact ptirallcl can hc provided with Lhc
subsonic solution to tllc triangular wing, the avcrago wxtical
induced velocity for points along a given span is again
considered. It can be shown (refcrencc 8).thtit. in tbe phmc
of the wing

w = :~,A+~ R P ‘d.,Lm’ dy,s3-+r””o-ml
(x–x,) ~

(?/-l/l)’%/(~-~l)’-@(Y –Y])’
(19)

where the order of integration musk be carriwi out us indi-
cated (i. e., the integration with respect to yl must bc made
first). The letters R. P. mean that the real part of the term
is h bc taken. Such a s?cvicc can bo used since the double
integral must always be a pure real qunntity in tbe mm r
(Ap/q is real everywhere on the plan form) and a pure
imaginary quantity over the rest of Lhe. must indicated by
the li@ts on the integrals (SCCfig. 4). The average vmtictd
induced velocity aIong the span may bc obttiincd hy app] ying
to equation (19) the operator

1

–s
m (Z?J

Zmz -.W
and since

(20)

equation (19) may be writ tcu in the form
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Pure imagi

t x,
Fmomz4.—RegiJrufm whti thadoubleIntegralterm h eqrmtlon(1.9)k a purerealmpure

Imaginary.

The derivation of 1, is similar to that used for equation (9)
and leads to the expression

It. is possible t.a fid an exact solution for ~Z(Z) by means
of equation (21), but the discussion of this amdysis is reser-red
for a subsequent section.

Rectangular plan form, —Equation (19) cm also be used in
the case of a rectangular plan form by an appropriate change
in ~imits; thus,

where again it should be streesed that the order of
integration cannot be reversed. The regions in which
the integration yields real or imaginary results are
shown in figure 5. h in the case of the subsonic rectangular
wing, the value of w will be obtained only aIong the z axis
so that y in equation (23) can be set equal to zero. The
loading will be assumed to have G form

(24)

which is similar to that used in the subsonic case tixcept that
the reference length is now the semispan instead of the chord.
Such a dXerence is reasonable since in the supersonic case
the position of the trailing edge cannot affect the loading

“on the wing.
I?kally, therefore, when y=O equation (23) becomes

Pure — -.
imaginary

p (x)Y)

1“ xl

— Pure real

.

.—

Fmcm 6.-Regbna for which the double Integraltermfmeque.ffou(2S)h purerealm pare

“=”J’(;)+%J45
-where 14 is given by the equation

The solution of equation (25) is deferred to a
section.

LOADING ON WINGS

(25)

(26)

subsequent

The previous section vias devoted to the development of
the integraI equations which are to be studied for the two
types of plan forms in subsonic and supersonic flight. In
order that this study can proc~d in a natural manuer, the
arrangement of the presentation has been changed so that
the plan form is the principal division and the speed is
subsidiary.

TIUh~GULiE WINGS

Supersonic case.—The decision to. sol-ie for the loading
on the supersonic, trkmgular, flat plate by analyzing equa-
tion (21) was not an obvious one .d.nce the exact solution of . .
the linearized partial differential equation for this case has
already been obtained. (See, e. g., references 10, 11, and
12.)” Thus it is knovin before starting that the value of

f,(z) in equation (21) must be l/E where E is the complete,. ~-.
elliptic integral of the second kind with modulus ~=d.
However, these solutions were obtained by an entirely
ditlerent procedure so that by salving equation (21) and
comparing the two results a check on the accuracy of the
method ‘is obtained. Furthermore, when the subsonic
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problwn is analyzed the same general procedure will be
followed find the results can then bc accept,ccl with greatt’r
confidence.

Th* fht step in tlw solution of equation (21), in which ZJ
has been set equrtl to wOsince the wing is a flat plate, is to
rbtinge variables by the transformation &=zJk This gives

(27)

In tlw equation for 1s, the t.mnsformfition ?nvl= v/z was used
so t.htlL

r1,= ‘+5 .–-!!(l–‘)*–p’m’q” dq,
. l-tl ?) I ~&+l-~I)(&-~+ql)

whieJl is completdy independent of z. The partial deriva-
tive of ho fb sides of equation (27) with respect to z gives

Equation (28) is a homogeneous linear integral equation.
The solution to equation (28) is simply j3’ (z) =0 or, what is
equivalent, .Mz) equals a constant, &) o say.
equation (27), this constant can be cvaluatecl.

which represents the solution to the problem.
1$ was calculated analyLically as in appendix

By m@nS of
Hc.nce,

(29)

The integral
A, and then

the value of (fJ O,as given by-equation (29), was determined
1)v numerical integration. For @m=O.8 tic result of this
c&putation was ‘0.708; whwe~ the true value. givcm by
l/E is 0.705.

Equation (27) can dso be solved when the wing is slender
with respect to the Mach cone by considering pm to be
small. %tting pm= Oyields

f

(1+~)

(I,)fimmfl=(l – g,)
dq,

. “-~) n13~(h+l-q,)(&- l+m) ‘“’””

wid this is readily ewduatcd to give

(30)

The integral equation reduces h

which by a rctmnsformation of variables Z1=z& becomes

Jf~lfa(~l)~?lx= (31)
o ,-

Equation (31 ) is a special form of AIw1’s integral cquat io~~,
the unique inversion 4 of which is, in this msc, ,fs(z) = 1,
This is easily -rerflcd by direct substitution.

TM? simplicity of this resu] L is not. acciclcnhll, of course,
since the valuo of j8(z) was originally int.rodtwcd fjy equa-
tion (20) as a correction fuctor to tlw slcll(lcr-lvirlg-tlit’or~-
solution.

Subsonic case.—l’hc study of the triangulm wing pr(’-
scnhxl in the preceding section wus made first at mhitrtiry
supersonic Iiach numbers and thutl tit H I la c’h numbw rqual
to 1. In keeping with this order of Mrcasing spew?, Llw
subsonic flat plate will be studied firsL at. sonic speed uni?
then for gcmeral subsonic Mach nurnhers.

An inspection of equations (9) and (22) is sullicicnL to
show that (11)~~-0 is equal to (lz)fl~-o. ~1(’IIC(?,cqumtion
(30) can be substitmtcd into equation (10) and there rcsulLs
(since again 75 is set equal to wO)

and this reduces immediately to

(32)

It is now obvious tkat equation (3”1), which wtis derived
from supersonic wing Lfieory, and equation (32), which was
derivccl from subsonic, wing theory, are identical, Clctirly
this cstublishcs tlw continuity of the tlwory in passing from
the supersonic to tho subsonic regirncs.

The study of the gcueral subsonic case leacls cve;~tunlly
to the numerical solution of an int,cgral equation. Huwcvcr,
an idea of the qualitalivo form which this solution m USL.
a9sume can be gainc(l by some preliminary nrmlysis.

First write equation (10) in Lhe form

where q=x/co, W=Zl/G, and E/wo= 1. The UWJURt iun of 11
is given in appendix A, nnd a plot of ~1’1~gair@ xa/~ for
(@n)g equal to O, 0.05, 0.10, and 0.20 is shown in figure 6,
Obviously equation (33) is a singular intqgrtil equation,
We have already seen that for /lm=O it is an Abel type
integral equation with a M-power sirqydarit.y at the u]qwr

t UAM’s aquatkm is written fn the form

f
Tr(r)dz

m)- —
.

4 %fVii

M hwem!on h

and thfsinversbn k unlqneforfurm!ImMg(r) that fuMfIl the cond[tbn

2fm
4 *(rake)-o U*<7 (a)

sfnco thewIuuone&r the velmcitythroughoutthe flowdeldmustdso mtbfy oondftIon (a)t
the valueofg(z) givenabore k uniquein tbe cles$of func+loneavaflabIe.



limit. For finite dues of ~m, however, 11 is seen from
figl~re 6 to be bounded and nonzero in the interred
l) ~ <J%< ~ ; hence, for such pm, equation (33) is a combi-
~~ution of two types of singuhr integral equations, the Abel
type and the Cauchy type, the Iatter having a first-power
singularity in the interval of integration.

Espericmcewith the Cauchy type integral equation

J
‘I g(x)dz

f(y)= —
(1 y—z (34)

whwfl arises, for example, in the study of subsonic Iifting-
[ine theory and t~vo-dimensional airfoiI theory is useful in
the present problem. Thus, the solution to equation (34)
is not. unique [even when g(z) is restricted accordirg to
w!uut ion (a) in footnote 4) unless some additional condition
k given. Such a condition n@ht be the requirement that.
g(1) =0; this would correspond in two-dimensional airfoiI
theory to the specification of the Kut.ta condition at the
trailing edge. Further, it. is known that if the condition
.g~1J=0 is satisfied in equation (34), then g(x) tends to
infinity as z approaches zero.

Since the solution to equation (33) must also satisfy the
Kutta condition, the above discussion leads one to anticipate
for the shape of ~1(rO) a cur-re something like that shown in
figure 7 (a). Ou the basis of such qualitati~e knowledge, a
simple numerical procedure was set up and used to cahdate
the solution to equation (33J. This procedure, which is

based on the assumption that ~~(zo) is constant over each of
nine equaLIy spaced intervals, is presented in appendi.. B.
The results of the analysis for (Bm)2 equal to 0.1 (i. e.,
&i=l.26) are shown in figure 7 (b}. —

In order to chcwk the results deriwxl from the method just
mentioned, equation (33) has been solved in an alternative
rmmer. In this second -appronch it- is assumed that J,(xJ
can be upprcmimated by a second degree polynmniaI did is
multiplied by two factors, one that vanishes for xo= 1 and the ._
other that tends to infinity as r. vahishes.

First consider the behavior of fl(zO) for smaU ro. A brief
qtudy of the solutions to the two integral equations repre-
sented by equations (32) and (34) will illustrate how jl(xJ
can be analyzed in the vicinity of the origin. First com=icler. ... _
the Qauehy type int~grd equation (34) and asume that for x _.
sn-d g(x) can be e.xpre~ed in the form

. . ..

Then equation (34} becomes

which in thelimitas y+ reduces to

.
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PIcIITRII 7.—Varl8tim of fiw!fh Z&

or, setting x=y~, to

The term on the left is indeterminate rmd implies

This equality is satisfied, since 6 is to be grca.ter than zero and
less than 1, only by the value 6= fi, The fact that this must
l-wLIMexponent of I/z in the expression for g(z) can be verified
by inspecting the known solution to equation (34).

A similar analysis applied to Abel’s integral oquaiion in the
form given by equation (32) ~hows for that case ~ must bc
zero which, again, agrees with t~~ known inversion.

Finally, in ippondix C this same apprmwh is used to dis-
cover t.hc.initial behavior of jl(zo) in equation (33). Figure 8
presents the results of this analysis throughout the range of
j3A for which 1, was calctdat.wl.

As was already mentioned, the variation of jl(zo) in Lho
vicinity of Zo= 1, that is, near the trailing edge of the wing,
is fixed by the Kutta condition. A useful statement of_this
condition that holds in both subsonic and supersonic flow is

COMMIITEE FOR .4ERONAUTICS

.08

.06

8

.04

.02

0 , .’
/9A

Frr?urm8.–Varhtkm of J with redumd espectratb #.4.

that the magni,tudc of tho lo~ding at the trai~ing cdgo must
no”t bc. in.fkitc. However, the rmly pertinent soluLiou h
equation (34), and hcncc to equation (33), that is not, i]]flnite
at z= 1 is that which is idmtically zero there. I?urthw, ns
the kiiing edge of Lk! Lriangulm wing is more and more
doscly-approached, it is rmsontddr to .expcct thtit the shn pc
of the load distribution in its vicinitty approaches t-hi in th
ricinity of a simple two-dimensional wing trailing wlge, Lho cf-
Fcct of the wing plan form vaniehiug as thu ratio of LI1odis-
Lance fmm the leading to trailing edge tcuds to infinity. ~n
Lhe basis of these considerations, jl(zo) should approach mm
as tho term (1 —&) ~ approaches zero when r. tends to 1.

It is also appammt, however, thatjl(xo) equals 1 for all 20
between zero and 1 when the Ilach number is unity. Fur-
ther, as MOapproaches 1 or as the angle of sweep approaches
90°, the Meet of the plan form on tho shape of the loading
near the t.rafiing edge becomes increasingly important or, in
Dther words, tho trailing edge of the triangular wing nmsL be
more and more closcly approached boforc ihu shape of Lhe
hvo-dimensional load distribution is simukdcd. An cs-
ponent to (1 —a) which satisfies this rcquirerncnt as well as
those in the preceding paragraph is 7/2(7+1 —zJ where -yis a
function of Macl].number and vaniilws ss Mo+I.

Finally, therefore, it is assumed Lhutjl (zO)can be cxxprcsscd
by the equation

The values of the constants a~, al, G, and Y are detw-mined by
satisfying equatio~ (33) at four chordwisc shttions and arc
given for (~~)g equal to O, 0.1, and 0.2 in Lablc I. Tim
accuracy to which these schtiona satisf y the integral equation
h indicated by table II.

A comparison, for (pm) 9=0.1, betwwn the solution giwm
by equation (35) and that derived by the method outlined in
appendix B is shown in figure 7 (b). Tho strictly numerical
rnet.hod presented in the appendix was used for thrco ditTertmL
interval spacings, results for which am indicated in tho fig-
ure by the symbols. Presumably the accuracy of We method
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increaswa with increasing number of intervals used. A study
of the figure shows that the numericaI method is apparently
approaching 5 the solution given by equation (35). Subse-
quent. values in this report are based on the solutions repre-
sented by the latter equation.

The. final cur-res forf,(xJ are shown in figure 9. A discus-
sion of the integrated mdues of the loading wiU be given later.

RECTAXGTJL.4EZWINGS

The discussion of the triangular wing was divided accord-
ing to the Mach number. The same division will be used in
tltis seetion, starting vitth the discussion of the results for
supersonic speeds, then with that for both supersonic and
subsonic theories at sonic speeds, and closing with a disms-
sion of the subsonic de~elopment.

‘o ,
Fmnm 9.–FIIMI tium of fI(zB) gken by equatbn (WIand tabk L

Supersonic case.--The soIution of equation (25) will give
the loading on a rectangular yi.ng flying at a supersonic
hlach number. Tbe evaluation of the integral I* is carried
out in appendix A where it is shown that 11 can be expressed
in terms of complete elliptic integrals of tbe &t and second
kinds. Having the e.qression for 1~, a numerical solution
may be obtained for j4(zl.$?) (see appendL. B). Figure 10
shows a plot of j~ (a factor representative of the chord lift
distribution) for a flat plate wing as a function of z/@,
the ratio of tle distance back from the leading edge to the
magnitude of the reduced semispan. The value of j~ given
by equation (25) can be checked in the interval O< (J/@) <2
because the ~~act solution to the complete Iinearizd partial
diierentid equation can be readily obta”med there. The
comparison is given in figure 10. The fairly rough a.~ement
shown is not surprising since equation (25) is derived on the
assumption that the spanwise distribution of load is eUiptical
at every chord station, and certainly this assumption is
least accurate in the interval where the compariwm viith
the axact results is made. The area under the exact and
approximate curves in figure 10, between the initial vahe
and that at which -f4= O, is nearly the same. (See the next

t’rhemaxhuun dtffmncelntahl IKrlsdmdyIesthm8mrc?nt(Wont blower
whej andthedi!kenm f??cmtemfprwstrreisnesikible.
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The integrated
value of J as given by equation (25), therefore, can be used
for Z/8/3>2?.

—.

&i for the qualitative nature of the variation, figure 10 ~“”
shows that the loading on a narrmr re”ctangulfbr wing flying
at SUpersonic spe.cds falls linearly to zero, becomes negative, _
and then oscillates between negative and poaiti~e values,
the amplitude of the oseilktion being so heavily damped ‘ “---
that after the third change in si”gnthe magnitude is practically ___
zero.

It should be noticed in studying the results of @e 10 ___
that the entire resultant lift of t-he wing is concentrated
in the interval OS (r/@) <2. But as the Mach number ..-., _
approaches 1 this interval approaches zero, and the entire
M of the wing is carried in a strip along the leading edge!
Such a scdut.ion liolates, in the l-icinity of the leading edge,
the assumption on w%ich the theory is based ancl should
be considered only as a theoretical limit.

Results for the lift and pitching moment on the rectangdar
wing w-N be dereloped in a later section.

Subsonic case.—The study of the subsonic rectangular ““
wing stems from equation (16). The firststep in the analysis
of the equation %11 be to consider its solution at 1%=0
and show that this is continoua with the supersonic results i
there.

The value of 1, can be written (equation (15)) as

IS=J:,-’Y “-
and for 88= O this becomes

and hence equation (16) can be written

(36)

‘I---Rk
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-.

\
o

3

I .
f4 \

\\\. =~~ct fine~ized
value

1 1 l\\ I ! i
‘i-t--P%-”l

\
o I -

/ -
\ -

-.4
I 2 3 4 5 6 7

VW
FMUM 10.—Vari3ttw3of &mrdwIs4 mrrectton Mar f4 for supersonic rAnlnhr Wlnr-

~TbisresuXt ako Mlovm by Ir@edbrgquatfon (Z51for theVSIues L%=O.



1(-)58 REPORT 11O.5-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Equation (36) is iclentiml with tho form of the supcmcmic
equation (25) at #s =0 so that once again the continuity
of the subsonic and supersonic theories at the sonic speed
range. is cstaMishcd. Furthermore, equation (36) shows that
if w/w. is constant thwl js (Xo) must h zero wvcrywhere
cxccpt at points where it crm bc reprmcntcd by a pulse,
the inttwal of which has a finite magnitude. From the
supwsonic discussion, it is clear that one such pulse existsi
and is located at the leading edge.

The evaluat.ion of 12 for 198>0 is given in appendix A.
The numerical solution to equation (16), assuming the Kutta
condition at the trailing edge, is given in rtppcndix B for
values of reduced asptwt ratio 19A cqua] “to 0.33, 1.0, 1.5,
and 2.0 For an aspect ratio equal to 2, thtw vahws corre-
spond to hfach numbers of 0.98G, 0.866, 0,662, and O,respec-
tively. The results of the computations are showm in figure
11 where tht? chmdwisc lift distribution factor jg(xJ is plotted
ttgtiiIL~t $0 for the various values of p~, By mmparison of
figure 11 with figure 10, it crM be seen that in the subsonic
case the loading drops monotonically from intinity at LIM
lmding edge to zero at the trailing edge and dots not oscil-
lrLLein the aftwportion} as in the case of the supersonic wing.

When 13equals one, these rcdts can be compared -with
those obtainc.d by Wieghmdt and presented in reference 9.
Fi.gurr. 12 shows the comparison for two values of Lhe aspect
ratio, Curves are also shown iI~-the figure for the loading
obLtiiucd by using Lhe method given in appendix B but by
stttisfying the integral equation at only six and three points.
Tlw Mter curve is in bet.tcr agrccmcnt with Wieghardt’s
result and, since Wmghardt (although using a different
method involving Birnbaum functions) used only four points,
this may account for the discrepancy between the final
results of this report and those of Wieghard t.
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AERODYNAMIC CHARACTERISTICS

The previous section prcsrmtvd solutions for the lotulil~
on triangular and rcctatlgular wings flying at subsonic talld
supmsonic speeds. This section will be dwotccl to the con-
version of these. loadings to expressions for lifL rLn(l cmh’r

of pressure.
LIFT

By Minit.ion the lift. coefhcicnl can Ix: writ,h~n

(37)

and Lhis will bc evaluated for llLII rtirious cases for which
the loading cocffh:ienL has Lwcu obttiincd.

Supersonic triangular wingm-–-Sincc tho exnct linearized
va]uc for the loaclb]g on the triungulti.r wing flying fit super-
sonic speeds has been drrivrd, the lifL codhient can Ix:
written in the form

(38)

where A is the uspcct ratio and 1? is the dlip tic integr?l of .,.
the second kind with tnoduhls k= ~11–#?%n*.

-.

Subsonic triangular wiug,-It~ [he ctLse of the subsonic
triangul~g wing, equation (37) Lwcorncs

and this becomca (since .4=4m.)

The uumeric.al cvaluat.ion of equation (39) is not difllvult
since zofl(a) vanishes at%= O.

Supersonic rectangular wing, --For vttlucs of ~<2@ tlw
exact value of t.ho lift coefficient on u rccttmgulnr wing flying
at supersonic speeds his lxwn obtained tincl ctin bc writlcu
in the form for $.4>1

&p4pA–2
cfA4 6A)2 (40)

When &i<’1 equation @7) mus~ be used in connection with
equation (24) and there resultY
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which reduces to

“’=%OG)”

md thiscm be written in the form

2X
Ivhich becomes, if Xz= —

Cop.-l;
for &i< 1

fL = ;;
— =—

J
f,(xz)dxz (41)

m-l?c

Subsonic rectangular wing.-The equation for the loading
on a subsonic rectangular wing, equation (14), p~aced in the
formula for lift coefficient yiekk

“’=2.&.rd’J:,$f2(:)’’8’-’2dy

The evaluation of equation (42) by numerical means re-
quires special consideration since jZ(zO) approaches in6nity
at the leading edge as shown in figure 11. To this end, re-
write equation (42”:1in the form

(43)

and equation (B4i in the appendh (for the special c~~e in
~vhich Xo= 1) in the form

.Jn application of the merm-~aiue theorem yields

●

w-here J5J has the modulus k~which equals &4/J4(l-tY) + @.4)2
and where 0<19<c. The combir-ation of equations (43)
tind (45) -yields an expression for the lift coefficient inrol~ing
only the load distribution from a distance ~/c. back of the
leading edge to the trailing edge.

PITCHIXG MOMEX<

By definition the pitchiig-moment coefficient about the
upex or leading eclge and based on the root chord can be
written

(46)

Equation (46) vi-ill be applied to the various loadings which
have been’studied.

Supersonic triangular wing.-The exact linearized -due - ‘-
for the pitching-moment coefficient on a triangular wing
flying at supersonic speeds has been derived elswhe.re and__
can be written in the form

cm
‘=–?Ecd (47}

Subsonic triangular wing.-The derkation of the pitching
moment on a subsonic triangular wing proceeds in the same
manner as the derivation of lift and tlwre res&s

(48)

This expression can be easily integrated nume.rictdly. “...._
Supersonic rectanguk wing.-For vahws of &A greater

than 1 the pitching-moment coefficient on a rectangular wing
is gi-ren by the equation, for PA> 1

c= 6&i-4—.—
LYA 3@A)~

(49)

men ,#.4<1 the solution to the integral equation must be
used and the final e~ression can be written

cm sTpfl :—. —— z2j&2)dra
CA 4“

(50)

Subsonic rectanguh.r wing.-The equation for the pitching-
moment coefficient on a subsonic rectanguhm wing follows
in the same manner as did that for the lift coefficient.
Hence,

Cf. r’
J

* ~ Xt)jl(.ro)dq—.. —
CA

and, since the variation of zO~~(xJ is as ind~cated in figure 13
the numerictd integration of equation (51) is simple.

CESTER OF PRESSURE

Since the pitching moment is based on the root chord, the
center of pressure of aU wing plan forms can be written

.=

(52)

DISCUSSION OF R~ULTS

Figures 14 and 15 show the variation of the lif~ coefficient
and center of pressure on triangular and rectanguaIr rings
for wdues of 13Abetween zero and 2. For the triangular wing,
the diierences between the subsonic and supersonic cas~
are not large” in this interval of reduced, aspect ratio; the
subsonic tig develops somewhat less lift and its center of
pressure moves forward as&l increases. The characteristics
of the rectangular vring, however, show a large -iariation in
passing through the speed of sound.

The subsonic rectangular wing has a variation of C.JAa
with .-l~ which is ahnost identical with that for the subsonic
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triangular wing. Unlike the triangular wing, however, tho

curve for z,, ~./coon the rechmgular wing shows this lift to be
cxwricd farther and fnrthw forward with decre.aaing f?A, from ~
the quarter-chord position at M.= ~ rdl the way to the
leading edge at f9fi=0.

As th speed is further increased ancl the rectangular wing
enters the supersonic spmd range, the magnitude of the lift
begins to osciIIate with increasing amplitude. This continues
until the reduced aspect ratio rises to one, after which, as

I
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FIIWBElS.-AarodymuniC char@srIsffm ofrectangulm wbrg havbgs low value of #..l,

13Aincrea&s still farther, the WIUC of CA/zia fds uniformly
to zero according to the expression

~=ii%(’-za’““ (53)

.. ---

.

which is the exact equation for the lift coefficient given by
[incmized lifting-surface theory. The difference l.wtwecn
the values of lift coefficient given by equations (41) and
(53), reprcsenhxl in figuro 15 by the solid and dashed linw,
rcspectiveIy, hm already bww discussed in t,hc section on
loading; the upproximatc sdutiori is based on t.hc assumption
that the spnn loading at each chord station is cIIiptiml ml
3uch an assumpf.ion is increasingly unrealistic for incrmwing
M. The dottld line shown in the figure appears to be a
reasonable interpolation Lwtwecn PA= 1, the lower limi L k
which equation (53 ) applies, and a point where the tqqwoxi-
mate solution given by equation (41) can IN considered
trustworthy.

The variation of the center of pr&surc. on n supersonic
rectangular wing indicates that the wing is unstable for all
positions of the pivot point behind the lcading edge for
values of PA around 0,4, the center of pressure, in such a
range, having moved forward of tho wing lcding edge,
As &l inc.rewms pr@ the value of 0.5, howcwr, the ceutrr
of pressure moves back along the \ving and rapidly ap-
pros.chea the midchorcl point,, its location for a iving of
infinite aspect ratio.
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COMPARISON OF RESULTS FOR SUBSONIC TRIANGULAR
WLNGS WITH OTHER THEORIES AND SOME EXPERIMENTS

DISCUSSION OF THE THEORETICAL B=ULTS

SeveraI other published ,theories can be used to calculate
the forces and moments on low-aspect-ratio triangdar wings
flying at subsonic speeda. A comparison between values of
~L= and center of pressure given by those theories and by
thr method of this report is summarized in figure 16.

4.0
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Pmtax 16.–VarIom tketkal and s%PEThmntalresults for Manguhr wings showins the
!Wfibn Off/~L= Sd Z..Z;CS Wkh rHhN32d_ tib, B.A.

The theories of Falknm (reference 13) and Weissinger
(reference 14) are well known and will not be discussed in
detail here. The results obtained from Weissinger’s me_thgd
were presented by Da-Young and Harper in reference 15
for aspect ratios equal to 1.5, 2.5, and 3.5; those obtained
from Faber’s method were presented by Berndt in reference
16 for aspect ‘ratios equal to 1.0, 1.67, and 2.5, and by
FaIkner in reference 13 for an aspect wtio equal to 4. Both
Berndt and Fal.kner used 126 vortices and 6 control points_
so the accuracy of their calculations is similar. It should
be mentioned, however, that in order to make Be&dt’s
results consistent with Falkner’s, -the values of CL= given
by Berndt have been multiplied by a factor 7 suggested and
used by Falkner in reference 13.

The resuh shown for Lawrence’s theory were present~d
in reference 17 and are based on a method oriatially given
@ reference 18.

The di.l?krences between wr.lues obtained from each of thi
theories can beat tributed to clifferences in the various sirapli-”
fyi@ assumptions used. The Weissinger and La,menie
theories agree on values of ~== but disagree as to the positio_n_
of the center of pressure. Falkner’s method and the method
of this report yieId results in good agreement for both CL=
and center+f-pressure Iocation. However} for &l=2, the
IVeissinger-Lawrence due of C’~=is about 9 percent below
and the center-of-pressure position about 3 pereent (based
on the root chord) farther forward than simiIar values
obtained in this report ‘“or by F&ner’s method.

.—

.—

,..

-.. .

—

DISCUSS1OX OF THE EXPERIMESTAL DATA

lkperimenta.I dat~ for low-aspect-ratio triangdar win~’ ‘- ~
are given in references 13 and 19 through 22. The sections, ,
aspect-ratio range, Rej-nolds numbers (based on the mean
aerodpamic chord), and seet ion thlcknesa ratios are given ‘“
in table III.

The source of t-he experimental values for the .4=4 w~~
(given in reference 13) is some unpublished British wind-
tunnel data. The Reynolds number is given as “high” and
the section is not spee”ked. Reference 21 presents the results
of experiments made in the Langley fr@light tunnel on .
some flat-plate (% inch thick with rounded leading edge)
modeIs having bemkcl trailing edges. Hence, the values for

the thickness ratios listd for these tests are effective thick- -
ness ratios, being, in fact, the plate thickness divided by the
root mean chord of the wing, (2/3)c0.

The experimental data presented in table IS” are portiofi ‘“-
of the data given in references 19 and 20 and the values
shown in figure 16 were obtained from curves cmstructed ‘~
by means of these numbers. Reference 21 presents @–m--”-”
mental results in graphical form and the slopes used ti”
fi~e 16 were read from these graphs. It should be men- .
tioned that. reference 21 ako gives rwndts for an aspect
ratio 0.5 ting but the data presented are not su.flicient to

.
T~ toF*er (rsfersJK313):“It lm not been podlie to eatabUe~tb”hder km ““

fl-es, bat’Egureuderiral kog adeItaand otMrwfuss _ that the 5etor am be takea
utirdy as independent M eepect rstIo. and to vary ss IH0Z9 (tangent of .swwhack of
quarter chord).“

~It can be eho~ however, that the ~te!zd wmation used by Lmrrmca to obtain the
curres shown in Egore 16and the one u.wd in thf.ereport IMth approach the sumevahes d
CL=andr..,~amtbeengbof sweepmzte dtherrber zerb. ~ the fmmermeetheyapprracb

the rarrdlfarJones’ Iowas@*tINheory resoltst and In the.latterme they yield 3r for C%

and I/3 ‘for r..,k
-.

.
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fix the slopes of the lift and moment curves near zero angle
of athwk. Hence, no valuc9 for this a9pect ratio are pre-
se.ntui. Finally, the wduca tdmn from reference 22 were
road from graphs presentd therein and based on intigratcd
pressure distributions (measurements taken along five span
stutions).

COMPARISON OF EXPEIUMENT WITH THEOFtY -LIFT-CURVE SLOPE

The experimental data shown in figure 16 (a.) do not seem
at finw glance to favor either group of theories. However,
sinre all these theories are based on the awmmption of zero
thickness, it is pcrtimmt to examine the data on the basis
of thickness ratio. A correhttion on this btisis is presented
in figure 17. It shows that with decreasing thickness ratio,
tlw ratio of the experimental -dues to those predicted by
the method of this report (in the rango O<%A<2) or by
.lMkner’s method (in the range 2 S13.A<4) tends to unity.
Of course, this trend is not conclusively borno out by thmc
comparisons and should be tested by more e.xperimentaI
mctisurements in the lower thicknc9s ratio range.

It is interesting to notice that a good approximfition to
the results calculatwl in this report and by Falkncr’s method
is given by the equation

2rAp=a=———
PA-I-2

. (54)

Thickness ratio, t!c

mms 17.-v5rfat Ion of (CLe) -J( CL.) ,,., tie Me of tfre~md m-~e *M ~ mt

efven by the thmretiml methodsof FaIkmr or thk reportwftbthicknees mtfo.

Equation (54) was derived by R. T. ,Joncs (SCCrcfcrcnco 23)
as a first-order correction to the value of CL= given by

lifting-line theory for wings having cI1ipt.ic plan f&m.s. It t
has been found, however, to provide a good estimate for the
aspect-ratio correction to wings of various plan forms.9 For
the particular case of the triangulw wing in compressible
flow, equation (54) bwomes

(55)

and its” variation for O</?A<4 is shown in figufw lfi (a).

COMPAEISOX OF EXPERIMENT WITH THEORY-CENTER-OF-PIIESSURE
LOCA’YiON

The comparison between csqwrimental ml thwret.ical
vaIues of centwwf-pressure Iocut.ion is shown in figure 1(1(b).
In weighting the cxperimcntd points shown, it should be
remembered that the tests recorded in reference 21 were
made on a flat plate with u bcwhxl trailing edge. When
such a wing is at u positive angIc of attack, the bevel causes
the flow- to separate at the surface discontinuity producing
an effective. upwardIy deflcctcd flap. The result is a low of
lift on t}w rearward p?rtion of the wing anti. a forward shift
in ccntcr of preswre. Mince, the experimental valuc9 for
z..~jco taken from reference 21 should Ix3low rcdative to tho
vaI,ues given in the other reftmmccs. with this taken into
consideration, the cxpcrimcntal values shown in figure 16 (b)
are in fairly good agreement and again favor, at least, tho
theoretical results based on I?alkncr’s method.

AMES AERONAUTICAL LABORATORY

NATIONAL ADVISORY COMFJITH+M FOR AEIIONAUTICS

I$IOFFETT FIELD, CALIF., iVov. 28, 1969.

* Thh approdrrrat[onb suggested!n sn artfcfe br R. T. Jonesand Dr&b Coburr,‘lAeradY-
nemka of WinSBat Elgh Sped,” to he publMred by the Prhmfon UrrlvereltyPrm hi
eectSonA of thebook entltfod APPlled Effsh-SPsd Aerudyrrarn[m,valume VI of tlro IIlsb.
Speed.Aerodynmimsnd Jet Fropulskm Serbs.
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APPENDIX A

EVALIJATION OF SPECIAL INT31GRALS

‘17HE lNTEGR.kL 11

The evaluation of 11 will be dii.ussed first for the case in
which Z>zl and second for the case in which X<Z1.

C.ME1.Z>rl

It is possible to vmite II in the form

(Al)

where M=m(z—. cl) and ~l=m(z+zJ.
the lower radical of the integrand can
transformation q= (u+ M)/(1 +t), and

-P1

1,=
8—G

s

P?

3’(=- u] (~ —PI) ~

Th6 Linear term in
be eliminated by the
th~ integral becomes

a=
—AT&J— j9ym2#l) +po~’(1 + p%y (J%*+ B%%17

#2~’(Pl+PJ

and

(A2)

(A3)

.(A4)

The exp-ion for u and 6 may be comb@ed to give the
useful identities

~z= —ctiflzm%

(W– U)(6–P,)+(P,–U) (6–A)=O

Using fundamental properties of ewh and odd functions,
equation (AZ) may be reduced to the form

by the substitution
–at_ #l

‘&l
Pi—u

tm.f where

ki=
(p,–u)’a

(#?–ua)(a–a)

By introducing the Jacobian elliptic functions in the
trumformntiom ~=mu, the integral reduces to

-irhere

and

()–:k’
V22= >0

k“+: k’

The integration Day now be completed and

.

-, ‘2P(.&J+Jwl&,J](A8J
where

ti(z)=m’(z) +lCE’(r)-m’@] (~9).

the modulus of the elliptic integrals being k or k’.

The procedure for obta-ming the solution for II in this case
is identical to that folIowed in case 1 except that in order to
fultll the c~ntition that t> –1, m and ~ must be defined in .
the following manner

~= —lhbo— B*’~2#1)—#ol’(1 + klzmq (JIo*+#?%*JLl~ “–

P’”qvI*Po)
(All)

k this case it can be shown that in equation (A/i) P,>O
and u9< —1, and the solution for II is
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whm (3(z) is defined as in equation (J49),

THE INTEGRAL Za

Writing 12 in the form

“=’.rTzP’~l“,
and setting

IZ can he integrated to give

J

Kdn~udu ZB8E
1S= 2/%s

o k‘-” k“

THE INTEGRAL 18

CME 1’ %%’%%

Writing 1S in the form
I

(A12)

(A13)

(A14)

. .

(A15)

and making the trtmsformaticm

.qn2U=(1 _;o~kz~; ,.-.,,...-(A 16)

90
where

~2_ 2do #l—HO -. (A17)
1—00 plL90+/Jo .

rwtuces equatiou (Al 5) to the form

‘a=(1+80)kJ-(JK’+4k’’n’u-”””-’” ““”

The integration may now be completed and

{

k (1 – f?JK+ –((3.,...\/l— L90z

‘4%9
—.

J55?ok2[’w%9-’’(J%}‘A18)——g
CASE 2, O<AI<WZI

In this case

and the transformation

.

is made y’here

~,+~.

k2_ 1‘@O_— —- -.-— —.. —
2 p*—/l~

Equation (A19) tlum becomes

J )(s
. . .

“K ““““
1,=(1 + 00) ~oh:~po “(JU

s

K eudu )1– t?08n*u—o ~ 1– L908n*u
0 l+= ——

2

The integration can be completed so that

“4 2M0 ~8&(~-~~200~~-1)+
1,=(1 + M 190(#,-Po)

d2eQ(I– @o’). Q(J-)_”. ..,.”:”’ “-:
l—60+260kZ” 1+60

60

J [ w=)- ““

2(1– L902) ~~ ~ l–do
1+!90 2k*–l+(?o

THE lNTEGRAL 1,

CASE 1, O<X&X-f%

TIM integral 1~ can bc wittcn

1,=2 ‘ (Z–8:1)*–L%? @

N —Y1’
(A21)

o

When * transformation snu=yl/s is made, the cxprmsion
may be integrated to give

s

K
14= 2(2 –2!,) (zn2udu=2(z-zJEl (A22)

o

where

, k?=~, (A23)

The transformation mu=@y,/(z-z*) applied to equation
(A24) ~ields

14=2
J

‘@~cnxudu=2ka(x—xl)& (A25)
o

where

(Al%)

and .

- (A27)
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APPENDIi B

NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

SUBSONIC TRIANGULAR WING

Site the in@graI 11 is a function ordy of the ratio XJC,
equation (10) can he written for ?i?=wo

where f=zl/x. It is now assumed that.j (XE/Co)may be con-
sidered constant over small intervals. This reduces the
solution of the integral equation to the elementary problem
of salving a system of simultanwus algebraic equations.
OLLthe basis of such an assumption, equation (B 1) becomes

The function gO(&)vras calcukted by numerical integra-
tion and systems of simultaneous equations were obtained
for values OYn equal to 3,.6, and 9. Solutions were found
using the Gausa-%del method (for which the simultaneous
equations were well suited). .

SUBSONIC RECT&NGULAR W’LNG

Substitut~m the value of 1~given by equation (A14) into
equation (16), one has for W=wo

A satisfactory numerical solution of equation (B4) requires
the solution of the s~tem of simultaneous equationa of the
form

—-0)+2[’’(34=++l=&~#m(2;-1

The convergence of the solutions to equation (B5) is indicated .
in figure 18 -iihere~the value of n was successi~ely taken to be
3, 6, and 9.

\
\

1.2 ‘.
I

Al,
!

Lo \
$, 03 Intervals

.s \
\ A6 lnfer~a[s

~ ❑ 9 Intervals

.6 ‘tI
A\\
o \

‘\

.4 - .
&4-t k

.2 - k

%
‘1L

00
P

.2 .4 .6 .8 Lo
Xo

SUPERSONIC RECTANGULAR WING

Equation (25) can be written when w=~ as .

‘=’’(:)+JX%W(%)%‘B’)
where from equstions (A22) and (M5) <

and where

k,=#- k,==~
—xl

.

By the application of the trapezoidrd rule” for numerical
integration to equation (B6), it is possibIe to mite ~J(@@)
explicitly as

j,@)=l-;A(;)[g,(”)+2&g~@)if(;)j (BS)

where A(z/19r) is the interd of the trapezoid. ---
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APPENDIX C

EVALUATION OF J

( ‘t)I~skkr tk’ intc’grrd equation

s

rO ~Z2f1 (X2) dq

‘s

()

* X211 ~ jl (m) dzz

2Ta!o= ~ -
(cl)..

,ES Zo—X2

In order to study .fl(q) in the lleig~ll~orlloo~l of the origin,
first set ra=ru~ so that equation (Ci) becomrs

then nssumo that., for small vrducs of T5, jl (r~)
uxprmscd as

J (X2)-: .....

(C2)

can be

From this onc has

wllicll immcdiatcly implirs

(C4)

TIM vitlue of 8 in the interval O<PA< 2 that satisfies
equation (C4) was determined by mimerical inh’grtition.
Tho results are shown in figure 8.
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TABLE I.—VALUES OF CONSTANTS FOR EQUATION (35)

CORRECTIONS TO SIJIXOER-WING TKEORY 1067

TABLE IV.—E.XPERIMENTAL DATA OK LON--ASPECT-RATIO
TRIANGULAR WINGS TAKEN FROM REPORTS . BY . .
BERNDT (REFERENCE 19) AND LANGE AND WACKE
(REFERENCE 20) (SEE TABLE 111)IEcl ‘A\

(6m)1

COUSL

.—

—

.

.—

(d Reference 19 (CL referred to la and @ken aboutrdnt stack ho. apex)-
Q
al
al
-f

I.cmo

I

LM!O L 0612
0 .Slm .mea

-.6422 –:&l
r! .010

,. !
—,

A-$%

c. a CL c.

am –4 s -a 165 0.CG6
–2.8 -. lm J&

:EJ –%8 -.096
–L7 –. O&l .015

-. M2 –:; -.023 .Om
–.mo .Om
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44 .149 –.OM

A+J!l A-1

T
Q CL

-a.7 -o. m❑:; –. E?
–. 0i5

-. –:sg.!
.069

::
a. 6 :%
46 .202

TABLE IL-VALUES CALCULATED FOR RIGHT SIDE OF
EQUATION (33) USING EQUATION (35) AND TABLE I FOR
.f, (q)

[Eumt WhltiOUwould, h @m, yfefd L@ml

L
a

0.1
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.3 ‘
.4
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.6
.7
.8
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LO1l
LOZ2
L022
L 016
LO1O
LOOO

ig

I

A-1 t A-4,8 I

a“ CL cm” a CL C% 1“ ,>—_
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TABLE 111.—RANGES OF PERTINENT PARAMETERS IN

EXPERIMENTS

-: n

I

~. :25 +.0177 -&g

I

–0. !a30 -sow
–:g

&m
-:mIhJ

. l!xl 5.W I:%
t , , L..
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1Se = for expbnm!on or qnalifleedon.


